About this course
In our Machine Learning Fundamentals course, you will learn about the basics of machine learning. We’ll cover concepts such as K-Nearest Neighbors (KNN) Algorithms and learn about error metrics such as the Mean Squared Error and the Root Mean Squared Error. You’ll also learn about hyperparameter optimization, a technique used to optimize machine learning algorithms to boost the accuracy and performance of trained models. Then you’ll dig into some k-fold cross-validation to perform more rigorous testing for your model.
Throughout this machine learning course, you won’t just learn how to use these models, you’ll also build an understanding of what is happening in the model training process. You’ll get an introduction to sci-kit learn, which is an open-source machine learning library for the Python programming language. Scikit learn supports many of the models and validation metrics you will learn about in this course.
As you learn these new skills, you’ll be working with AirBnB prices data from Washington D.C. to predict the optimal price for becoming generating profit from a D.C. home rental.
At the end of the course, you’ll complete a portfolio project in which you will use the K-Nearest Neighbors algorithm to predict car prices. This project is a chance for you to combine the skills you learned in this course and practice the machine learning workflow. This project also serves as a portfolio project that you can showcase to your future employer.
By the end of this course, you’ll be able to:
- Understand and explain the basics of machine learning.
- Understand the common pitfalls in machine learning and how to avoid them.
Lessons in this course
Loading lessons.... |
---|
Thousands of learners have changed their careers with Dataquest
97%
Learners who recommend
Dataquest for career advancement
4.9 stars
Dataquest rating on
G2Crowd and SwitchUp
$30k
Average salary boost
for learners who complete a path
Join a community of 1M+ data learners on Dataquest
Sign up for a free account
Get access to hundreds of free lessons.
Choose a course or path
Start anywhere, from beginner topics to advanced concepts.
Learn with hands-on exercises
Learn with real data and build your experience.
Apply your skills
Create projects, build your portfolio, and build your career.