About this course
Linear Algebra is an important field of mathematics, and it’s essential for understanding how many machine learning algorithms actually work. In our Linear Algebra for machine learning course, you will learn the linear algebra concepts behind machine learning systems like neural networks and the backpropagation to train deep learning neural networks.
You’ll learn concepts such as linear systems. You will learn how to represent a problem as a linear system as well as how to solve it by elimination. You will also build up an intuition for the geometry behind vectors and how to perform vector operations.
Then, you’ll dig into matrix algebra and how to perform matrix operations using NumPy. You will also learn how to calculate the inverse of a matrix as well as what it means to be the transpose of a matrix. To wrap up this linear algebra course, you will learn about the different types of solution sets for a linear system. Along with learning about solution sets, you will also learn the difference between a homogeneous and nonhomogeneous system.
After you complete this course, you can feel confident that you know the necessary calculus fundamentals for intermediate machine learning techniques.
By the end of this course, you’ll be able to:
- Understand the key ideas to understand linear systems.
- Apply the concepts to machine learning techniques.
Lessons in this course
Loading lessons.... |
---|
Thousands of learners have changed their careers with Dataquest
97%
Learners who recommend
Dataquest for career advancement
4.9 stars
Dataquest rating on
G2Crowd and SwitchUp
$30k
Average salary boost
for learners who complete a path
Join a community of 1M+ data learners on Dataquest
Sign up for a free account
Get access to hundreds of free lessons.
Choose a course or path
Start anywhere, from beginner topics to advanced concepts.
Learn with hands-on exercises
Learn with real data and build your experience.
Apply your skills
Create projects, build your portfolio, and build your career.