
RegEx Cheat Sheet

Regular Expressions

This cheat sheet provides a quick reference for essential regular expression
(RegEx) constructs, helping you perform text pattern matching and
manipulation with ease. It covers foundational syntax, such as character
classes, anchors, and quantifiers, alongside advanced features like groups,
lookaheads, and inline flags. Whether you're cleaning data, validating input,
or performing complex text searches, this cheat sheet ensures you can find
the right tools for the task.

Each entry includes practical examples that demonstrate regex's flexibility,
from identifying patterns to modifying text with functions like . The
examples are paired with concise explanations to simplify learning and
application. To test and refine your own patterns interactively, visit

, an indispensable tool for exploring how regex behaves.

Designed to make regex approachable and useful, this handy resource is
perfect for tackling challenges in text processing, data cleaning, and parsing.
Keep it close-by to be ready to streamline workflows and work effectively with
text-based data.

re.sub()

regex101.com

Free resources at: dataquest.io/guide

Table of Contents

Special Characters
^ $. \ | + * ? {#} {#,#} {#,#}?

[rEsz] [a-z] [a\-z] [a-] [-a] [a-z0-9] [(+*)] [^ers]

Sets

Character Classes | Special Sequences
\w \W \d \D \s \S \b \B \A \Z

Groups
cat(?=fish) (?<=cat)fish cat(?!fish) (?<!cat)fish

(?P=pet) (?P<pet>cat) (ro) (?:cat) (cat)\1 (?#...)

Popular Python Re Module Functions
findall, search, split, sub, match

Inline Flags
(?a) (?i) (?L) (?m) (?s) (?u) (?x)

https://regex101.com
https://www.dataquest.io/guide/numpy-pandas-and-data-visualization-tutorial

Matches MatchesSyntax SyntaxExplained Explained

Special Characters

^r regular expressions
The ^ anchor matches the character or group to its
right r only at the start of a string. It does not match if
r appears elsewhere.

s$ she sells seashells The $ anchor matches the character or group to its left s
only at the end of a string. It does not match if s appears
elsewhere.

\. www.example.com The \ character is used to escape special characters
(e.g., \. for a literal dot) or to denote character classes
(e.g., \d for digits). See the Character Classes section
for more details.

A B| Action Button The | (OR) operator matches either the expression to its
left A or its right B, finding all possible matches across
the string.

b+ a b c b b b d b
The + quantifier greedily matches the preceding
expression b one or more times. It captures the longest
possible sequences of b in the string.

colou r? color colour The ? quantifier matches the preceding character or
group zero or one times, making it optional.

u{3} uuu uuuu uu u The {m} quantifier matches the preceding character u
exactly m times.

u{2,3} uuu uuuu uu u The {m,n} quantifier matches the preceding character at
least m times but not more than n times.

u{2,3}? The {m,n}? quantifier matches the preceding character
at least m times but not more than n times, in a non-
greedy (lazy) manner.

uuu uuuu uu u

. r e g u l a r e x p r e s s i o n s The . wildcard matches any single character (including
spaces) but not newline characters \n. It does not match
multiple characters unless combined with a quantifier
like * or +.

RegEx Cheat Sheet Free resources at: dataquest.io/guide

a b c b b b d bb* The * quantifier greedily matches zero or more
occurrences of the preceding expression b, including
empty matches at positions where no b exists.

https://www.dataquest.io/guide/numpy-pandas-and-data-visualization-tutorial

Matches MatchesSyntax SyntaxExplained Explained

Sets Character Classes

RegEx Cheat Sheet Free resources at: dataquest.io/guide

[]rEsz Regular Expression Square brackets [] define a set, where each character
is matched independently. A match occurs if any
character from the set appears in the text.

[]a-z 1 Fig, 2 NewTons The - in [m-n] is a range operator , matching any
character from m to n .

[]a\-z a to z is not = A-Z The \ escapes the - , treating it as a literal character
instead of a range operator. This set matches a , z ,
and - only.

[]a- regular-expression Matches a and the literal - because - is treated
as a character when placed at the start or end of a
set.

[]-a regular-expression As above, matches a or - .

[]a-z0-9 396 ExpressionS Matches characters from a to z and also from 0
to 9 .

[](+*) (valid) *expressions+words Special characters become literal inside a set, so
this matches (, + , * , and) .

[]^ers regular expression
The ^ negates the set, matching any character not
in the set. Here, it matches characters that are not e
, r , or s .

\w Ch4racter_Class3s
Matches all alphanumeric characters (a-z , A-Z , and 0-9).
It also matches the underscore _ .

\W ! @ # $ % ^ & * ()
Matches any non-word character, which includes symbols,
punctuation, and spaces. Non-word characters are anything
not in the set [a-zA-Z0-9_].

\d Matches all digits 0-9 .1a2b3c

\D 1a2b3c Matches any non-digits.

\s character classes Matches whitespace characters including the \t , \n , \r ,
and space characters.

\S character classes Matches non-whitespace characters.

r\Z color colour Matches the end of the string. The backslash \ escapes the
normal meaning of Z, turning it into a special positional anchor.
Unlike $, which matches the end of each line in multi-line mode,
\Z always matches the very end of the entire string, excluding
any trailing newline.

\B c h a ra c t e r c l a s s e s Matches where \b does not, that is, the boundary of \w
characters.

\b character classes
Matches a word boundary, the position between a \w
character (letter, digit, or underscore) and a \W character
(non-word character). It doesn’t match actual characters but
positions like the start or end of words.

\Ac color colour Matches the start of the string. The backslash \ escapes the
normal meaning of A, turning it into a special positional anchor.
Unlike ^, which matches the start of each line in multi-line mode,
\A always matches the very beginning of the entire string.

https://www.dataquest.io/guide/numpy-pandas-and-data-visualization-tutorial

Syntax Explained

Popular Python re Module Functions

Finds all non-overlapping matches of the pattern A in string
B and returns them as a list. If no matches are found, it
returns an empty list.

re. (A, B)findall

Searches string B for the first occurrence of the pattern A
and returns a match object. If no match is found, it returns
None

re. (A, B)search

Splits string B into a list at each occurrence of the pattern A
If no match is found, it returns the original string as a single-
element list.

re. (A, B)split

Replaces all occurrences of the pattern A in string C with
the string B and returns the modified string. The original
string C remains unchanged.

re. (A, B, C)sub

Attempts to match the pattern A starting strictly at position
0 in string B . If the pattern doesn’t match at the start, it
returns None. Unlike re.search(), it does not evaluate the
rest of the string.

re. (A, B)match

RegEx Cheat Sheet Free resources at: dataquest.io/guide

Note: The re module is a part of Python's standard library so it does not need to be installed.

Run import re to access these functions.

Groups

MatchesSyntax Explained

()ro groups
Captures the substring ro as a group. Groups are denoted by
parentheses () and can be accessed later for further
processing.

(?:)cat cat fish dog
A non-capturing group groups patterns without creating a
capturing group. Use non-capturing groups when grouping is
needed for logic but you don’t need to extract the group.

cat(?=)fish catfish catdog A positive lookahead asserts that the pattern fish must
follow cat for a match. It checks the context after the current
match without consuming it.

(?<=)cat fish catfish dogfish A positive lookbehind asserts that the pattern cat must
precede fish for a match. It checks the context before the
current match without consuming it.

cat fish(?!) catfish catdog A negative lookahead asserts that the pattern fish must not
follow cat for a match. It checks the context after the current
match without consuming it.

(?<!)cat fish catfish dogfish A negative lookbehind asserts that the pattern cat must not
precede fish for a match. It checks the context before the
current match without consuming it.

()\1cat catcat dogcat The backreference construct \1 refers to the first captured
group in the pattern. Subsequent groups can be referenced
with \2 , \3 , and so on.

https://www.dataquest.io/guide/numpy-pandas-and-data-visualization-tutorial

Matches

Matches

Syntax

Syntax

Explained

Explained

Groups

Inline Flags

(?P< >)pet cat dog cat fish The named group construct (?P<name>...) assigns a
name to the captured group for easy reference later in the
regex. The P in ?P stands for Python.

(?aiLmsux)
The inline flag setting construct (?flags) applies one or
more flags to modify the behavior of the regex pattern that
follows it. Use (?flags:regex) for group matching with
flags.

(?a)\w+
The ASCII-only flag a restricts shorthand character classes
like \w , \W , \b , and \B to match only ASCII characters,
excluding Unicode.

cat 123_ CAT

cat Cat CAT CaT(?i)cat The ignore case flag i makes the pattern case-insensitive,
allowing matches regardless of capitalization.

(?L)\w+ The locale-dependent flag L makes shorthand
character classes like \w locale-sensitive, allowing
matches based on cultural or regional rules.

straße cafe Éclair

(?m)^cat The multi-line flag m makes ^ and $ match the start
and end of each line, rather than the start and end of the
entire string.

catdog catfish

RegEx Cheat Sheet Free resources at: dataquest.io/guide

dog cat fish(?P=)pet The named group backreference (?P=name) matches the
content previously captured by the named group name . In
this example, it matches the word cat .

(?#)... The comment construct allows you to include comments in
your regex. These comments are ignored by the regex engine
and do not affect the match result.

MatchesSyntax Explained

cat\ndog(?s)cat.dog The dot matches all flag s allows the . character to
match newline characters in addition to all other
characters.

naïve cat café(?u)\w+ The Unicode flag u makes shorthand classes like \w ,
\W , \b , and \B match Unicode characters. Unlike the L
flag, which applies locale-specific rules, the u flag uses
Unicode rules to ensure consistent matching across
languages.

cat The verbose flag x enables extended formatting by
allowing spaces and comments in the pattern for
improved readability. Spaces are ignored unless escaped
with a backslash.

(?x)c a t

https://www.dataquest.io/guide/numpy-pandas-and-data-visualization-tutorial

