

This cheat sheet provides a quick reference for essential R programming commands, helping you perform data manipulation, visualization, and statistical analysis with confidence. It covers foundational topics like installing packages and understanding R's data structures, alongside advanced tasks such as building models and applying machine learning techniques.

Each section includes concise syntax and practical examples to illustrate how R commands are used in real-world scenarios. You'll find guidance on working with vectors, lists, matrices, and data frames, performing common data wrangling tasks like filtering and summarizing, and creating visualizations such as histograms, bar plots, and boxplots. The cheat sheet also highlights R's capabilities for statistical analysis with commands like mean, lm, and cor.

Designed for clarity and accessibility, this resource is ideal for data analysts, statisticians, and programmers seeking to enhance their workflows in R. Whether you're exploring data, developing algorithms, or building reproducible reports, this cheat sheet ensures you can quickly apply R's powerful tools to your projects.

Table of Contents

Basics

INSTALL.PACKAGES, LIBRARY,
ASSIGNMENT (<-), PRINT, CLASS</pre>

Data Structures

C, LIST, MATRIX, DATA.FRAME, DF\$A OR DF

Data Manipulation

FILTER, SELECT, MUTATE, SUMMARIZE, ARRANGE

Data Visualization

PLOT, BARPLOT, HIST, BOXPLOT

Statistics

MEAN, MEDIAN, SD, COR, LM

Programming

IF, FOR, WHILE, FUNCTION, APPLY

Machine Learning

MATRICES, LINEAR MODEL, VISUALIZE RESIDUALS

File I/O

READ.CSV, WRITE.CSV, READRDS, SAVERDS, LIST.FILES

□ Data Structures

Syntax for	How to use	Explained	Syntax for	How to use	Explained
Install Package	<pre>install.packages("dplyr")</pre>	Installs the dplyr package.	Create Vector	c(1, 2, 3)	Combines elements into a vector.
Load Package	library(dplyr)	Loads the dplyr package into the current R session.	Create List	list(a=1, b="two")	Creates a list with named elements.
Assignment	x <- 5	Assigns value 5 to the variable x.	Create Matrix	matrix(1:6, nrow=2)	Creates a matrix with 2 rows and 3 columns.
Print Output	print(x)	Prints the value of x to the console.	Create Data Frame	data.frame(a=1:3, b=4:6)	Creates a data frame with columns a and b .
Literals and Data Types	TRUE, 125, 12.5, "Hello"	Examples of logical, integer, numeric, and character literals in R.	Access Element	df\$a df[1, 1]	Performs a logical OR operation between a column and a specific element.
Extracting Numbers from Strings	<pre>library(readr) data_frame <- mutate(data_frame, column = parse_number(column))</pre>	Uses parse_number to extract numeric values from string columns.	Loading stringr package	library(stringr)	Loads the stringr library to work with strings in R.
			Opening a JSON File	<pre>f <- fromJSON('filename.json')</pre>	Loads a JSON file into an R dataframe using the jsonlite package.
Basic String Indexing	<pre>str_sub("Dataquest is awesome", 1, 9)</pre>	Extracts "Dataquest" as a substring by specifying start and end indices.	Creating a List	<pre>new_list <- list("data scientist", c(50000,40000), "programming experience")</pre>	Defines a list containing diverse data types.

Data Manipulatio	r
------------------	---

Syntax for	How to use	Explained
Filter Rows	filter(df, a > 2)	Filters rows where column a is greater than 2.
Select Columns	select(df, a, b)	Selects specific columns by name.
Mutate Columns	<pre>mutate(df, c = a + b)</pre>	Adds a new column c as sum of a and b .
Summarize Data	summarize(df, avg=mean(a))	Calculates mean of column a and returns as avg.
Arrange Rows	arrange(df, desc(a))	Sorts rows by column a in descending order.
Importing Data	<pre>data <- read_csv("name_of_file_with_data.cs v")</pre>	Imports dataset into R using the read_csv function from readr.
Summing Values Across Rows	<pre>df %>% mutate(new_column_name = rowSums(.[1:3]))</pre>	Sums specified columns for each row and adds as a new column.
Summing Values Across Columns	<pre>df %>% bind_rows(tibble(total = colSums(across(everything())))</pre>	Sums specified rows for each column and adds as a new row.

Data Visualization

Syntax for	How to use	Explained
Creating a Basic Plot	data %>% ggplot()	Initialize a basic ggplot without specifying any a
Creating Subplots	<pre>data %>% ggplot(aes(x = variable_1, y = variable_2)) + geom_line() + facet_wrap(~variable_3)</pre>	Plots subsets of data in s facets.

Plots multiple columns on the same axes using ggplot2.

```
ggplot(data = uber_trips, aes(x =
distance, y = cost)) + geom_point()
```

variable_1)) + geom_line(aes(y =

variable_2)) + geom_line(aes(y =

data %>% ggplot(aes(x =

variable_3))

Generate scatterplots to visualize bivariate relationships in ggplot2.

```
ggplot(data = df, aes(x = predictor,
y = response)) + geom_point() +
scale_y_continuous(labels =
scales::comma)
```

Create scatterplots with y-axis labels formatted using commas instead of scientific notation.

Importing CSV

files

read_csv("name_of_the_dataset.csv")

dataframe <-

Read CSV files into R using readr's

read_csv() for efficient data

import.

Creating Bar

Chart

Plotting

multiple

columns

Scatterplots

Scatterplots with Labels

1

t2 chart aesthetics.

separate

Create a bar chart using ggplot2, mapping variables to x and y axes.

Mean

Median

Standard

Deviation

Correlation

Linear

Model

Types of

Variables

P-Value

Decision

Threshold

Statistics & Probability

Syntax for
Scatterplot with Comma Labels
Scatterplot with Groups
Scatterplot with Groups

Vertical Bar

Grouped Bar

Chart

Plot

How to use

ggplot(data = df, aes(x =

predictor, y = response)) +

scale_y_continuous(labels =

ggplot(data = df, aes(x =

predictor, y = response)) +

geom_point() + facet_wrap(~

ggplot(data = df, aes(x =

predictor, y = response)) +

geom_point() + facet_wrap(~

geom_bar()

= "dodge")

categorical_variable, ncol = 2)

ggplot(data = df, aes(x = col)) +

ggplot(data = df, aes(x = col_1,

fill = col_2)) + geom_bar(position

categorical_variable, ncol = 2)

scales::comma) + geom_point()

comma format.

Explained

Plots a scatterplot with y-axis labels in

Creates scatterplots of response vs predictor, grouped by a categorical variable.

Creates scatterplots of response vs predictor, grouped by a categorical variable.

Creates a vertical bar chart to visualize counts of data.

Creates a grouped bar plot to compare frequency distributions of categorical variables.

Syntax for How to use

mean(x)

median(x)

mean <- weighted.mean(x =</pre> **Weighted Mean** distribution, w = weights)

sd(x)

cor(x, y)

 $lm(y \sim x, data=df)$

Example Variables: Age (Quantitative), Gender (Qualitative)

11

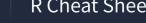
if (p_value < 0.05) { print('Reject</pre> null hypothesis') } else { print('Fail to reject null hypothesis') }

Explained

Calculates the mean of vector \mathbf{x} .

Calculates the median of vector \mathbf{x} .

Computes the weighted mean of a numerical vector using specific weights.


Calculates the standard deviation of x.

Calculates correlation between x and y.

Fits a linear regression model.

Classify variables as Quantitative (numerical) or Qualitative (categorical).

Decide on hypothesis rejection using a common p-value threshold of 0.05.

Statistics & Probability

Syntax for	How to use	Explained	Syntax for	How to use	Explained
Chi-Squared Distribution	pchisq(3.84, df = 1)	Calculates the cumulative probability for a chi-squared distribution with specific degrees of freedom.	Simulate Coin Toss	<pre>set.seed(1) coin_toss <- function() { if (runif(1) <= 0.5) 'HEADS' else</pre>	Simulates a random coin toss using R's uniform random numbers.
Chi-Squared Test	pchisq(q = 10, df = 5)	Calculate cumulative probability for a chi-squared statistic of 10 with 5		'TAILS' }	
		degrees of freedom.	Addition Rule for	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$	Formula to calculate probabilities of unions of events, adjusting for
Multi-category Chi-squared	<pre>data <- table(income\$sex, income\$high_income)</pre>	Performs a chi-squared test on the given contingency table.	Probability		overlap in non-exclusive cases.
Test Computing Mode in R	<pre>compute_mode <- function(vector) {counts_df <- tibble(vector) %>% group_by(vector) %>% summarise(frequency=n()) %>% arrange(desc(frequency)); counts_df\$vector[1]}</pre>	Defines a function to calculate the mode of a given vector using dplyr	Independ ent Events P(A ∩ B)	$P(A \cap B) = P(A) * P(B)$	Probability of independent events occurs as product of individual probabilities.
		functions.	Product Rule in Experiments	<pre>total_outcomes <- a * b</pre>	Calculate the total outcomes for two independent experiments using the product rule.
Calculate Z- score	<pre>z_score <- function(value, vector) { (value - mean(vector)) / sd(vector) }</pre>	This calculates the Z-score for a value relative to a vector's distribution.	Uniform Distribution	# Assuming all outcomes have equal chance outcomes <- c(1, 2, 3, 4, 5, 6) probabilities <- rep(1/6, 6)	Demonstrates a uniform distribution for a dice roll, where outcomes equally likely.
Chi-Squared Distribution	pchisq(3.84, df = 1)	Calculates the cumulative probability for a chi-squared distribution with specific degrees of freedom.	<pre>paste('Outcome:', outcomes, 'Probability:', probabilities)</pre>		

Statistics & Probability

Syntax for	H
Conditional Probability Calculation	
Conditional Probability	
Conditional Probability Definition	

How to use

P_A_given_B <- P_A_and_B / P_B

P_A_given_B <- length(intersect(A,</pre> B)) / length(B)

P_A_given_B <- 1 - P_Ac_given_B

Independence

P_A_and_B <- P_A * P_B

Explained

Compute P(A|B) given the probability of A and B, and probability of B.

Compute P(A|B) using set cardinalities.

Conditional probabilities are interrelated; P(A|B) and its complement P(Ac|B) can be calculated mutually.

Defines independent events: joint probability equals product of individual probabilities.

Programming

Syntax for How to use

if (x > 0) print("positive") If Statement

for (i in 1:3) print(i) For Loop

while (x < 5) x < -x + 1While Loop

Syntax for functions

Define

Apply

Function

Function

function_name <- function(input) {</pre> # Code to manipulate the input return(output)

Explained

Executes code if condition is true.

Iterates over a sequence.

Repeats code while the x < 5condition is true.

Defines a reusable function structure in R.

f <- function(a, b) a + b</pre>

apply(m, 1, sum)

Exponentiation

3^5

ymd('20/04/21')

Creating Dates from Strings

Creating Dates

Define Window

Frame

ymd("20/04/21")

ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING

11

Defines a function with two arguments.

Applies a function over rows/columns of a matrix.

Calculates 3 raised to the power of 5.

Converts a string into a Date object using 'year-month-day'.

Converts a string to a date object using the specified format.

Defines a window frame including one row before and after the current row for computations.

Machine Learning

Syntax for

How to use

Fitting a Linear Model

lm_fit <- lm(response ~ predictor,</pre> data = df)

Visualize Residuals library(ggplot2) ggplot(data.frame(residuals = lm_fit\$residuals), aes(x = residuals)) + geom_histogram()

Hyperparam eter Grid Search

knn_grid <- expand.grid(k = 1:20)</pre> knn_model <- train(tidy_price ~</pre> accommodates + bathrooms + bedrooms, data = training_data, method = "knn", trControl = train_control, preProcess = c("center", "scale"), tuneGrid = knn_grid) plot(knn_model)

Naive Bayes Algorithm

 $P(Spam|w1,...,wn) \propto P(Spam) *$ ПіР(wi|Spam)

Explained

Fit a linear regression model with a response and a predictor variable.

Visualize the distribution of residuals to check the linear model's fit.

Performs grid search to optimize k for k-NN model and visualizes results.

Classifies messages as spam using conditional probabilities.

File I/O

Syntax for

Read CSV

Write CSV

How to use

read.csv("file.csv")

write.csv(df, "file.csv")

readRDS("file.rds") Read RDS

saveRDS(df, "file.rds") Write RDS

list.files() **List Files**

Explained

Reads a CSV file into a data frame.

Writes a data frame to a CSV file.

Reads an RDS file into R.

Saves an object as an RDS file.

Lists files in the current directory.

