
SQL Cheat Sheet

This cheat sheet provides a quick reference for common SQL
operations and functions, adapted to work with the Classic
Models database structure.   

The examples use tables such as products, orders, customers,
employees, offices, orderdetails, productlines, and payments
as shown in the database diagram.

This structure represents a model car business, so the
examples have been tailored to fit this context.

SQL Cheat Sheet Find more free resources at dataquest.io/guide/sql

productlines

productLine

textDescription

htmlDescription

image

customers

customerNumber

customerName

contactLastName

contactFirstName

phone

addressLine1

addressLine2

city

state

postalCode

country

salesRepEmployeeNumber

creditLimit

orderdetails

orderNumber

productCode

quantityOrdered

priceEach

orderLineNumber

offices

officeCode

city

phone

addressLine1

addressLine2

state

country

postalCode

territory

products

productCode

productName

productLine

productScale

productVendor

productDescription

quantityInStock

buyPrice

MSRP

orders

orderNumber

orderDate

requiredDate

shippedDate

status

comments

customerNumber

employees

employeeNumber

lastName

firstName

extension

email

officeCode

reportsTo

jobTitle

payments

customerNumber

checkNumber

paymentDate

amount

https://www.dataquest.io/guide/sql-tutorial/

Table of Contents

Selection Queries
Select, Order By, Distinct

Aggregate Functions
Sum, Avg, ROUND, Min, Max,
Group By, HAVING, COUNT

Conditional Queries
Case, COALESCE, Cast

Window Functions
Partition BY, Order By,
PARTITION BY AND ORDER BY

Joins
Inner Join, Left Join, Right Join,
Cross Join, JOIN MULTIPLE, JOIN SELF

Ranking Functions
DENSE_RANK, RANK, Row Number,
NTile

Subqueries
SELECT, FROM, WHERE, IN, EXISTS,
Correlated Subquery, =, CTE

SQLite and PostgreSQL
SQLite-specific commands,  
PostgreSQL-specific commands

Combine Data
Union, Union All, Except,
Intersect

String Functions
Upper, Lower, Length, SUBSTR,
Concatenation

Find more free resources at dataquest.io/guide/sqlSQL Cheat Sheet

https://www.dataquest.io/guide/sql-tutorial/

How to use ExplainedClause

SELECT

 FROM

 *

 products;

Select

Display only productName
and buyPrice columns from
products table.

SELECT

FROM

 productName, buyPrice

 products;

Retrieve unique
combinations of city and
country where customers
are located, sorted by
country and then city.

SELECT DISTINCT

 FROM

 ORDER BY

city, country

customers

country, city;

Retrieve unique values from
productLine in products
table.

SELECT DISTINCT

 FROM

productLine

products;

Distinct

Sort the selected columns by
productName in ascending
order.

SELECT

FROM

ORDER BY ASC

 productName, buyPrice 

 products 

 productName ;

Sorts the data by
customerNumber and then
by orderDate within each
customerNumber.

SELECT

FROM

ORDER BY ASC DESC

 orderNumber, customerNumber,

 orderDate, status 

 orders 

 customerNumber , orderDate ;

Sort the selected columns by
buyPrice in descending
order.

SELECT

FROM

 ORDER BY DESC

 productName, buyPrice

 products

 buyPrice ;

Order By

Selection Queries Aggregate Functions

How to use ExplainedClause

Calculates the total sales

from the orderdetails

table.

SELECT

 AS

 FROM

SUM(quantityOrdered * priceEach)  

total_sales

orderdetails;

SUM

Averages the buyPrice

values in products.

SELECT AS

 FROM

AVG(buyPrice) average_price

products;

AVG

Rounds the average of

buyPrice to two decimal

places.

SELECT

 AS

FROM

 (AVG(buyPrice),)

 average_price

 products;

ROUND 2ROUND

Finds the minimum value in

the buyPrice column of

products.

SELECT AS

FROM

 (buyPrice) lowest_price 

 products;

MINMIN

Finds the maximum value in

the buyPrice column of

products.

SELECT AS

FROM

 (buyPrice) highest_price

 products;

MAXMAX

Counts the total number of

rows in orders. 

SELECT AS

FROM

 (*) total_orders

 orders;

COUNTCOUNT

Note COUNT(*) includes all rows, while COUNT(column_name) excludes NULL values in the specified column.

Find more free resources at dataquest.io/guide/sqlSQL Cheat Sheet

Display all columns from
products table.

https://www.dataquest.io/guide/sql-tutorial/

How to use ExplainedClause How to use ExplainedClause

Aggregate Functions

Groups rows by

productLine and

calculates the average

price for each product line.

 SELECT

AS

FROM

GROUP BY

 productLine, (buyPrice)  

 avg_price

 products

 productLine;

AVGGROUP BY

Groups rows by

productLine for products

with price over 100 and

calculates the average price

for each product line.

 SELECT

AS

FROM

WHERE >

 GROUP BY

 productLine, (buyPrice)

 avg_price

 products

 buyPrice

 productLine;

AVG

100

Groups orders by

customerNumber, counts the

number of orders for each

customer in 2023 and

beyond, and sorts the results

by the order count in

descending order.

This shows which customers

placed the most orders in

2023.

 SELECT

AS

FROM

WHERE >=

GROUP BY

ORDER BY DESC

 customerNumber, (orderNumber)

 order_count

 orders

 orderDate

 customerNumber

 order_count ;

COUNT

'2023-01-01'

Filters product lines to only

include those with average

price greater than 50.

 SELECT

 AS

FROM

 GROUP BY

 HAVING >

 productLine, (buyPrice)

 avg_price

 products

 productLine

 (buyPrice) ;

AVG

AVG 50

HAVING

Counts the total number of

rows in the products table,

returning the total number of

products. This includes all

rows, regardless of NULL

values in any columns.

SELECT AS

 FROM

COUNT(*) total_products

products;

COUNT

Counts the number of non-

null values in the reportsTo

column of the employees

table, showing how many

employees have a manager

assigned.

COUNT ignores NULL values,

so employees without a

manager (e.g., the president)

are not included in this

count.

SELECT

 AS

FROM

COUNT(reportsTo)

 employees_with_manager 

 employees;

Find more free resources at dataquest.io/guide/sqlSQL Cheat Sheet

https://www.dataquest.io/guide/sql-tutorial/

Find more free resources at dataquest.io/guide/sqlSQL Cheat Sheet

String Functions

How to use ExplainedClause How to use ExplainedClause

Converts the productName

column values to uppercase.

SELECT

AS

FROM

UPPER(productName)

 uppercase_name

 products;

upper

Converts the productName

column values to lowercase.

SELECT

AS

FROM

LOWER(productName)

 lowercase_name

 products;

lower

Calculates the length of each

value in the productName

column.

SELECT

AS

FROM

 productName, (productName)

 name_length

 products;

LENGTHlength

Extracts the first three

characters from the

productLine column.

SUBSTR extracts a substring

from a given string.

It can be used to extract

characters from the

beginning, end, or any

position within the string.

SELECT

AS

FROM

SUBSTR(productLine, ,)

 product_category, productLine

 products;

1 3SUBSTR

Extracts the last four

characters from the

productCode column.

SELECT

AS

FROM

 (productCode, -)

 product_id, productCode

 products;

SUBSTR 4

Concatenates firstName

and lastName with a space

in between.

SELECT || ||

AS

 FROM

 firstName lastName

 full_name

 employees;

' 'Concat

||using

Creates an email address by

concatenating firstName,

lastName, and domain.

SELECT || || ||

 AS

FROM

 firstName lastName

 email_address 

 employees;

'.'

'@classicmodelcars.com'

https://www.dataquest.io/guide/sql-tutorial/

Find more free resources at dataquest.io/guide/sqlSQL Cheat Sheet

How to use ExplainedClause How to use ExplainedClause

Conditional Queries

Categorizes the buyPrice

values into Budget, Mid-

range, and Premium

categories.

SELECT

CASE

WHEN < THEN

WHEN BETWEEN

 AND THEN

ELSE

END AS

FROM

 productName,

 buyPrice,

 buyPrice

 buyPrice

 price_category

 products;

50

50

100

'Budget'

'Mid-range'

'Premium'

Case

Categorizes orders into

different sale seasons based

on the order date.

SELECT

CASE

WHEN CAST

AS INTEGER

BETWEEN AND THEN

WHEN CAST

AS INTEGER

BETWEEN AND THEN

WHEN CAST

AS INTEGER

 BETWEEN AND THEN

ELSE

END AS

FROM

 orderNumber,

 orderDate,

 (strftime(,

 orderDate))

 '

  

 (strftime(,

 orderDate))

 (strftime(,

 orderDate))

 sale_season

 orders;

'%m'

Spring Sale'

'%m'

'Summer Sale'

'%m'

'Fall Sale'

'Winter Sale'

3 5

6 8

9 11

Returns 'No description

available' if

productDescription is

null.

SELECT

COALESCE

AS

FROM

 productName,

 (productDescription,

)

 product_description

 products;

'No description available'

Coalesce

Returns the first non-null

value among extension,

email, or 'No contact

information'.

SELECT

COALESCE

AS

FROM

 employeeNumber,

 firstName,

 lastName,

 (extension, email,

) contact_info

 employees;

'No

 contact information'

Converts the orderDate to

DATE type.

SELECT CAST AS

AS

FROM

 orderNumber, (orderDate DATE)

 order_day

 orders;

Cast

https://www.dataquest.io/guide/sql-tutorial/

Find more free resources at dataquest.io/guide/sqlSQL Cheat Sheet

How to use ExplainedClause How to use ExplainedClause

Combine Data

Combines the product names

from ‘Classic Cars’ and

‘Vintage Cars’ product lines,

removing duplicates.

SELECT

FROM

WHERE =

UNION

SELECT

FROM

WHERE =

 productName

 products

 productLine

 productName

 products

 productLine ;

'Classic Cars'

'Vintage Cars'

union

Combines the product names

from ‘Classic Cars’ and

‘Vintage Cars’ product lines

without removing duplicates.

SELECT

 FROM

WHERE =

UNION ALL

SELECT

FROM

WHERE =

 productName

 products

 productLine

 productName

 products

 productLine ;

'Classic Cars'

'Vintage Cars'

union all

Returns products EXCEPT the

‘Classic Cars’ product line,

demonstrating how EXCEPT

removes rows from the first

result that appear in the

second result.

SELECT

FROM

EXCEPT

SELECT

FROM

WHERE =

 productCode, productName

 products

 productCode, productName

 products

 productLine ;'Classic Cars'

except

Returns customers who are

both located in the USA and

have a credit limit over

100,000.

This query demonstrates how

INTERSECT finds common

rows between two result sets.

SELECT

FROM

WHERE =

INTERSECT

SELECT

FROM

WHERE >

 customerNumber, customerName

 customers

 country '

 customerNumber, customerName

 customers

 creditLimit ;

'USA

100000

intersect

Note EXCEPT and INTERSECT are not supported in all SQL databases. These examples use

PostgreSQL syntax.

https://www.dataquest.io/guide/sql-tutorial/

Find more free resources at dataquest.io/guide/sqlSQL Cheat Sheet

How to use ExplainedClause How to use ExplainedClause

Window Functions

Note SQLite does not support window functions natively. The following examples use PostgreSQL syntax and require

PostgreSQL or a SQLite extension.

Calculates the average

extension length within each

office. The PARTITION BY

clause divides the data into

partitions based on the

officeCode column.

SELECT

OVER

PARTITION BY

AS

FROM

 employeeNumber,

 officeCode,

 extension,

 (LENGTH(extension)) (

 officeCode

) avg_extension_length

 employees;

AVG

PARTITION

BY

Calculates a running total of

extension lengths ordered by

length in descending order.

SELECT

OVER

ORDER BY LENGTH DESC 

AS

FROM

 employeeNumber,  

 officeCode, 

 extension, 

 (LENGTH(extension)) ( 

 (extension)

) running_total_length 

 employees;

SUM

ORDER BY

Calculates a running total of

extension lengths within

each office, ordered by

length.

SELECT

LENGTH OVER

PARTITION BY

ORDER BY LENGTH DESC 

AS

FROM

 employeeNumber,  

 officeCode, 

 extension, 

 ((extension)) ( 

 officeCode 

 (extension)

) running_total_length 

 employees;

SUM

PARTITION

BY

ORDER BY

Note SQLite does not support ranking functions natively. The following examples use PostgreSQL syntax and require

PostgreSQL or a SQLite extension.

Ranking Functions

Ranks products based on

buyPrice in descending

order. Differs from RANK by

handling ties differently (no

gaps in ranking).

select emp_id, sal_amount, sal_date, 

dense_rank() over ( 

 order by month_salary 

) as rank 

from salary

SELECT

DENSE_RANK OVER

ORDER BY DESC

AS

FROM

 productCode,

 productName,

 buyPrice,

 () (

 buyPrice

) price_rank

 products;

Dense

Rank

Ranks employees within

each office based on their

extension length. Differs

from DENSE_RANK by leaving

gaps in ranking when there

are ties.

select emp_id, sal_amount, sal_date, 

dense_rank() over ( 

 order by month_salary 

) as rank 

from salary

SELECT

RANK OVER

PARTITION BY

ORDER BY LENGTH DESC

AS

FROM

 employeeNumber,

 officeCode,

 extension,

 () (

 officeCode

 (extension)

) extension_rank_in_office

 employees;

RANK

Assigns a unique row

number to each order based

on orderDate and

customerNumber.

select emp_id, sal_amount, sal_date, 

dense_rank() over ( 

 order by month_salary 

) as rank 

from salary

SELECT

ROW_NUMBER OVER

ORDER BY

AS

FROM

 orderNumber,

 orderDate,

 customerNumber,

 () (

 orderDate,

 customerNumber

) order_number

 orders;

ROW

NUMBER

https://www.dataquest.io/guide/sql-tutorial/

Find more free resources at dataquest.io/guide/sqlSQL Cheat Sheet

Joins

How to use ExplainedClause

Joins orders and

customers tables, returning

only matching rows. This is

the default join type when

JOIN is used without

specifying LEFT, RIGHT, or

FULL.

SELECT

FROM AS

INNER JOIN AS

ON

 o.orderNumber, 

 o.orderDate, 

 .customerName 

 orders o 

 customers

 o.customerNumber = .customerNumber;

c

c 

c

INNER

JOIN

Joins products and

orderdetails tables,

returning all products and

their orders (if any).

SELECT

FROM AS

LEFT JOIN AS

ON

 p.productCode, 

 p.productName, 

 od.orderNumber 

 products p 

 orderdetails od 

 p.productCode = od.productCode;

LEFT

JOIN

Joins offices and

employees tables, returning

all employees and their

offices (if any).

SELECT

FROM AS

RIGHT JOIN AS

ON =

 .employeeNumber, 

 .lastName, 

 o.officeCode 

 offices o 

 employees

 o.officeCode .officeCode;

e

e

e 

e

RIGHT

JOIN

How to use ExplainedClause

Returns all possible

combinations of products

and product line

descriptions.

SELECT

FROM AS

CROSS JOIN AS

 p.productName, 

 pl.textDescription 

 products p 

 productlines pl;

CROSS

JOIN

Self-join example listing

employees and their

respective managers.

SELECT

AS

AS

FROM AS

LEFT JOIN AS

ON

 .firstName || || .lastName

 employee, 

 .firstName || || .lastName

 manager 

 employees

 employees

 .reportsTo = .employeeNumber;

e1 e1

e2 e2

e1 

e2 

e1 e2

' '

' '

JOIN SELF

Joins four tables: orders,

customers, orderdetails,

and products.

SELECT

FROM AS

JOIN AS

ON =

JOIN AS

ON =

JOIN

ON =

 o.orderNumber,

 .customerName,

 p.productName

 orders o

 customers

 o.customerNumber .customerNumber

 orderdetails od

 o.orderNumber od.orderNumber

 products p

 od.productCode p.productCode;

c

c

c

join	

multiple

https://www.dataquest.io/guide/sql-tutorial/

Find more free resources at dataquest.io/guide/sqlSQL Cheat Sheet

How to use ExplainedClause

Subqueries

Includes a subquery that

calculates the average price

for all products.

SELECT

SELECT FROM

AS

FROM

 productName,

 buyPrice,

 ((buyPrice)

 products) avg_price

 products;

AVG

Subquery

in SELECT

Finds product lines with an

average price greater than

100 using a subquery.

SELECT

FROM SELECT

AS

FROM

GROUP BY

AS

WHERE >

 productLine,

 avg_price

 (productLine,

 (buyPrice) avg_price

 products

 productLine)

 line_averages

 avg_price ;

AVG

100

Subquery

in FROM

This query selects products

that are more expensive than

the average price in their

respective product line,

ordered by product line and

price in descending order.

SELECT

FROM

WHERE >

SELECT

FROM

WHERE =

ORDER BY

DESC

 productName,

 buyPrice

 products p1

 p1.buyPrice (

 (p2.buyPrice)

 products p2

 p1.productLine

 p2.productLine)

 productLine,

 buyPrice ;

AVG

Subquery

in WHERE

How to use ExplainedClause

Finds products that were

ordered in order 10100.

SELECT

FROM

WHERE IN

SELECT

FROM

WHERE =

 productName,

 buyPrice

 products

 productCode (

 productCode

 orderdetails

 orderNumber

);

10100

Subquery

with IN

This query retrieves the

names of customers who

have placed at least one

order on or after January 1,

2023.

SELECT

FROM

WHERE EXISTS

SELECT

FROM

WHERE

=

AND >=

 customerName 

 customers

 ( 

 orders o 

 o.customerNumber

 .customerNumber 

 o.orderDate

);

c 

1 

c

'2023-01-01' 

Subquery

with

EXISTS

https://www.dataquest.io/guide/sql-tutorial/

Find more free resources at dataquest.io/guide/sqlSQL Cheat Sheet

How to use ExplainedClause

Subqueries

This query calculates the

total amount for each order

using a CTE and then joins

the orders table with the

CTE to display order details

with total amounts, ordered

by total amount in

descending order.

WITH AS

SELECT

*

 AS

FROM

GROUP BY

SELECT

FROM

JOIN

 ON

 ORDER BY DESC

 order_totals (

 orderNumber,

 (quantityOrdered priceEach)

 total_amount

 orderdetails

 orderNumber

)

 o.orderNumber,

 o.orderDate,

 ot.total_amount

 orders o

 order_totals ot

 o.orderNumber = ot.orderNumber

 ot.total_amount ;

SUM

CTE

This query selects all orders

for a specific customer

named ‘Mini Gifts

Distributors Ltd.’, ordered by

date from most recent to

oldest.

SELECT

 FROM

 WHERE =

SELECT

FROM

WHERE

ORDER BY DESC

orderNumber,  

 orderDate,  

 totalAmount 

orders 

customerNumber ( 

 customerNumber 

 customers 

 customerName =

) 

 orderDate ;

'Mini Gifts

 Distributors Ltd.' 

=

SQLite and PostgreSQL

SQLite Commands

Lists all tables in the current database..tables

Opens a new or existing database file.. filenameopen

Saves the current database to a file.. filenamesave

Exits the SQLite prompt..quit

Shows the schema for the specified table.. table_nameschema

Sets output to column mode with headers

for better readability.

.mode

.headers

column

on

https://www.dataquest.io/guide/sql-tutorial/

Find more free resources at dataquest.io/guide/sqlSQL Cheat Sheet

SQLite and PostgreSQL

PostgreSQL Commands

Note SQLite doesn’t have a built-in user management system like PostgreSQL, so commands related to user

management are not applicable.

Lists all databases.\l

Connects to a specific database.\ database_namec

Lists all tables in the current database.\dt

Describes the specified table.\ table_named

Lists all roles/users.\du

Toggles display of query execution time.\timing

Opens the last command in an editor.\e

Executes commands from a file.\i filename

Exits the PostgreSQL interactive terminal.\q

https://www.dataquest.io/guide/sql-tutorial/

