
Selecting tables, columns, and rows:

SQL Cheat Sheet: Fundamentals
Performing calculations with SQL

Display the whole table:
SELECT

FROM
*
table_name;

Performing a single calculation:
SELECT 1320+17;

Performing multiple calculations:
SELECT 1320+17, 1340-3, 7*191, 8022/6;

Performing calculations with multiple numbers:
SELECT 1*2*3, 1+2+3;

Renaming results:
SELECT 2*3 AS mult, 1+2+3 AS nice_sum;

SELECT
FROM

Remember: The order of clauses matters in SQL. SQL
uses the following order of precedence: FROM, SELECT,
LIMIT.

column_name_1, column_name_2
table_name;

Display the first 10 rows on a table:
SELECT

FROM
LIMIT

*
table_name;
10;

Adding comments to your SQL queries

Adding single-line comments:

SELECT
FROM

-- First comment
column_1, column_2, column_3 -- Second comment
table_name; -- Third comment

Adding block comments:

SELECT
FROM

/*
This comment
spans over
multiple lines
 */

column_1, column_2, column_3
table_name;

Select specific columns from a table:

Many of these examples use table and column names from
the real SQL databases that learners work with in our
interactive SQL courses. For more information, sign up for a
free account and try one out!

SELECT column_name_1, column_name_2 FROM table_name_1
INNER JOIN table_name_2 ON table_name_1.column_name_1
 = table_name_2.column_name_1;

Joining data in SQL:

SQL Intermediate:
Joins & Complex Queries

Joining tables with INNER JOIN:

SELECT * FROM facts
LEFT JOIN cities ON cities.facts_id = facts.id;

Joining tables using a LEFT JOIN:

SELECT f.name country, c.name city
FROM cities c
RIGHT JOIN facts f ON f.id = c.facts;

Joining tables using a RIGHT JOIN:

SELECT f.name country, c.name city
FROM cities c
FULL OUTER JOIN facts f ON f.id = c.facts_id;

Joining tables using a FULL OUTER JOIN:

SELECT name, migration_rate FROM FACTS
ORDER BY 2 desc; -- 2 refers to migration_rate column

Sorting a column without specifying a column name:

SELECT c.name capital_city, f.name country
FROM facts f
INNER JOIN (
 SELECT * FROM cities
 WHERE capital = 1
) c ON c.facts_id = f.id
INNER 10

Using a join within a subquery, with a limit:

SELECT [column_names] FROM [table_name_one]
 [join_type] JOIN [table_name_two] ON [join_constraint]
 [join_type] JOIN [table_name_three] ON [join_constraint]
 ...
 ...
 ...
 [join_type] JOIN [table_name_three] ON [join_constraint]

Joining data from more than two tables:

SELECT
 album_id,
 artist_id,
 "album id is " || album_id col_1,
 "artist id is " || artist_id col2,
 album_id || artist_id col3
FROM album LIMIT 3;

Combining columns into a single column:

SELECT
 first_name,
 last_name,
 phone
FROM customer
WHERE first_name LIKE "%Jen%";

Matching part of a string:

CASE
 WHEN [comparison_1] THEN [value_1]
 WHEN [comparison_2] THEN [value_2]
 ELSE [value_3]
 END
AS [new_column_name]

Using if/then logic in SQL with CASE:

WITH track_info AS
(
 SELECT
 t.name,
 ar.name artist,
 al.title album_name,
 FROM track t
 INNER JOIN album al ON al.album_id = t.album_id
 INNER JOIN artist ar ON ar.artist_id = al.artist_id
)
SELECT * FROM track_info
WHERE album_name = "Jagged Little Pill";

Using the WITH clause:

CREATE VIEW chinook.customer_2 AS
SELECT * FROM chinook.customer;

Creating a view:

Other common SQL operations:

[select_statement_one]
UNION
[select_statement_two];

Selecting rows that occur in one or more SELECT statements:

SELECT * from customer_usa
INTERSECT
SELECT * from customer_gt_90_dollars;

Selecting rows that occur in both SELECT statements:

SELECT * from customer_usa
EXCEPT
SELECT * from customer_gt_90_dollars;

Selecting rows that occur in the first SELECT statement but
not the second SELECT statement:

DROP VIEW chinook.customer_2;

Dropping a view

WITH
usa AS
 (
 SELECT * FROM customer
 WHERE country = "USA"
),
last_name_g AS
 (
 SELECT * FROM usa
 WHERE last_name LIKE "G%"
),
state_ca AS
 (
 SELECT * FROM last_name_g
 WHERE state = "CA"
)
SELECT
 first_name,
 last_name,
 country,
 state
FROM state_ca

Chaining WITH statements:

Important Concepts and Resources:
Reserved words

Reserved words are words that cannot be used as identifiers (such as variable names or function names) in a programming
language, because they have a specific meaning in the language itself. Here is a list of reserved words in SQL.

