Tag Archives for " Learn Python "

Advanced Jupyter Notebooks: A Tutorial

Lying at the heart of modern data science and analysis, Jupyte project lifecycle. Whether you’re rapidly prototyping ideas, demonstrating your work, or producing fully fledged reports, notebooks can provide an efficient edge over IDEs or traditional desktop applications. Following on from “Jupyter Notebook for Beginners: A Tutorial“, this guide will take you on a journey […]

An Intro to Deep Learning in Python

Deep learning is a type of machine learning that’s growing at an almost frightening pace. Nearly every projection has the deep learning industry expanding massively over the next decade. This market research report, for example, expects deep learning to grow 71x in the US and more than that globally over the next ten years. There’s […]

Python vs R: Head to Head Data Analysis

Which is better for data analysis? There have been dozens of articles written comparing Python and R from a subjective standpoint. This article aims to look at the languages more objectively. We’ll analyze a data set side by side in Python and R, and show what code is needed in both languages to achieve the […]

Python Dictionary Tutorial

Python offers a variety of data structures to hold our information — the dictionary being one of the most useful. Python dictionaries quick, easy to use, and flexible. As a beginning programmer, you can use this Python tutorial to become familiar with dictionaries and their common uses so that you can start incorporating them immediately into […]

Understanding Regression Error Metrics

Human brains are built to recognize patterns in the world around us. For example, we observe that if we practice our programming everyday, our related skills grow. But how do we precisely describe this relationship to other people? How can we describe how strong this relationship is? Luckily, we can describe relationships between phenomena, such […]

Basic Statistics in Python: Probability

When studying statistics, you will inevitably have to learn about probability. It is easy lose yourself in the formulas and theory behind probability, but it has essential uses in both working and daily life. We’ve previously discussed some basic concepts in descriptive statistics; now we’ll explore how statistics relates to probability. Prerequisites: Similar to the […]

Basic Statistics in Python: Descriptive Statistics

The field of statistics is often misunderstood, but it plays an essential role in our everyday lives. Statistics, done correctly, allows us to extract knowledge from the vague, complex, and difficult real world. Wielded incorrectly, statistics can be used to harm and mislead. A clear understanding of statistics and the meanings of various statistical measures […]

Python Generators

Python generators are a powerful, but misunderstood tool. They’re often treated as too difficult a concept for beginning programmers to learn — creating the illusion that beginners should hold off on learning generators until they are ready. I think this assessment is unfair, and that you can use generators sooner than you think. In this […]

Programming Best Practices For Data Science

The data science life cycle is generally comprised of the following components: data retrieval data cleaning data exploration and visualization statistical or predictive modeling While these components are helpful for understanding the different phases, they don’t help us think about our programming workflow. Often, the entire data science life cycle ends up as an arbitrary […]

Data Retrieval and Cleaning: Tracking Migratory Patterns

Advancing your skills is an important part of being a data scientist. When starting out, you mostly focus on learning a programming language, proper use of third party tools, displaying visualizations, and the theoretical understanding of statistical algorithms. The next step is to test your skills on more difficult data sets. Sometimes these data sets […]

Generating Climate Temperature Spirals in Python

Ed Hawkins, a climate scientist, tweeted the following animated visualization in 2017 and captivated the world: This visualization shows the deviations from the average temperature between 1850 and 1900. It was reshared millions of times over Twitter and Facebook and a version of it was even shown at the opening ceremony for the Rio Olympics. […]

Jupyter Notebook for Beginners: A Tutorial

The Jupyter Notebook is an incredibly powerful tool for interactively developing and presenting data science projects. A notebook integrates code and its output into a single document that combines visualisations, narrative text, mathematical equations, and other rich media. The intuitive workflow promotes iterative and rapid development, making notebooks an increasingly popular choice at the heart […]

Python Regular Expressions Cheat Sheet

The tough thing about learning data is remembering all the syntax. While at Dataquest we advocate getting used to consulting the Python documentation, sometimes it’s nice to have a handy reference, so we’ve put together this cheat sheet to help you out! This cheat sheet is based on Python 3’s documentation on regular expressions. If […]

Introduction to AWS for Data Scientists

These days, many businesses use cloud based services; as a result various companies have started building and providing such services. Amazon began the trend, with Amazon Web Services (AWS). While AWS began in 2006 as a side business, it now makes $14.5 billion in revenue each year. Other leaders in this area include: Google—Google Cloud […]

Introduction to Functional Programming in Python

Most of us have been introduced to Python as an object-oriented language; a language exclusively using classes to build our programs. While classes, and objects, are easy to start working with, there are other ways to write your Python code. Languages like Java can make it hard to move away from object-oriented thinking, but Python […]

Introduction to Python Ensembles

Stacking models in Python efficiently Ensembles have rapidly become one of the hottest and most popular methods in applied machine learning. Virtually every winning Kaggle solution features them, and many data science pipelines have ensembles in them. Put simply, ensembles combine predictions from different models to generate a final prediction, and the more models we […]

Postgres Internals: Building a Description Tool

In previous blog posts, we have described the Postgres database and ways to interact with it using Python. Those posts provided the basics, but if you want to work with databases in production systems, then it is necessary to know how to make your queries faster and more efficient. To understand what efficiency means in […]

Learning Curves for Machine Learning

Diagnose Bias and Variance to Reduce Error When building machine learning models, we want to keep error as low as possible. Two major sources of error are bias and variance. If we managed to reduce these two, then we could build more accurate models. But how do we diagnose bias and variance in the first […]

Adding Axis Labels to Plots With pandas

Pandas plotting methods provide an easy way to plot pandas objects. Often though, you’d like to add axis labels, which involves understanding the intricacies of Matplotlib syntax. Thankfully, there’s a way to do this entirely using pandas. Let’s start by importing the required libraries: import pandas as pd import numpy as np import matplotlib.pyplot as […]

Pandas Concatenation Tutorial

You’d be hard pressed to find a data science project which doesn’t require multiple data sources to be combined together. Often times, data analysis calls for appending new rows to a table, pulling additional columns in, or in more complex cases, merging distinct tables on a common key. All of these tricks are handy to […]

Using Excel with pandas

Excel is one of the most popular and widely-used data tools; it’s hard to find an organization that doesn’t work with it in some way. From analysts, to sales VPs, to CEOs, various professionals use Excel for both quick stats and serious data crunching. With Excel being so pervasive, data professionals must be familiar with […]

Regular Expressions for Data Scientists

As data scientists, diving headlong into huge heaps of data is part of the mission. Sometimes, this includes massive corpuses of text. For instance, suppose we were asked to figure out who’s been emailing whom in the scandal of the Panama Papers — we’d be sifting through 11.5 million documents! We could do that manually […]

Setting Up the PyData Stack on Windows

The speed of modern electronic devices allows us to crunch large amounts of data at home. However, these devices require the right software in order to reach peak performance. Luckily, it’s now easier than ever to set up your own data science environment. One of the most popular stacks for data science is PyData, a […]

Kaggle Fundamentals: The Titanic Competition

Kaggle is a site where people create algorithms and compete against machine learning practitioners around the world. Your algorithm wins the competition if it’s the most accurate on a particular data set. Kaggle is a fun way to practice your machine learning skills. This tutorial is based on part of our free, four-part course: Kaggle […]

SQL Fundamentals

The pandas workflow is a common favorite among data analysts and data scientists. The workflow looks something like this: The pandas workflow works well when: the data fits in memory (a few gigabytes but not terabytes) the data is relatively static (doesn’t need to be loaded into memory every minute because the data has changed) […]

Loading Data into Postgres using Python and CSVs

An introduction to Postgres with Python Data storage is one of (if not) the most integral parts of a data system. You will find hundreds of articles online detailing how to write insane SQL analysis queries, how to run complex machine learning algorithms on petabytes of training data, and how to build statistical models on […]

How to Generate FiveThirtyEight Graphs in Python

If you read data science articles, you may have already stumbled upon FiveThirtyEight’s content. Naturally, you were impressed by their awesome visualizations. You wanted to make your own awesome visualizations and so asked Quora and Reddit how to do it. You received some answers, but they were rather vague. You still can’t get the graphs […]

Machine Learning Fundamentals: Predicting Airbnb Prices

Machine learning is easily one of the biggest buzzwords in tech right now. Over the past three years, Google searches for “machine learning” have increased by over 350%. But understanding machine learning can be difficult — you either use pre-built packages that act like ‘black boxes’ where you pass in data and magic comes out […]

Python Cheat Sheet for Data Science: Intermediate

The printable version of this cheat sheet The tough thing about learning data is remembering all the syntax. While at Dataquest we advocate getting used to consulting the Python documentation, sometimes it’s nice to have a handy reference, so we’ve put together this cheat sheet to help you out! This cheat sheet is the companion […]

Using pandas with Large Data Sets

Tips for reducing memory usage by up to 90% When working using pandas with small data (under 100 megabytes), performance is rarely a problem. When we move to larger data (100 megabytes to multiple gigabytes), performance issues can make run times much longer, and cause code to fail entirely due to insufficient memory. While tools […]

Python Cheat Sheet for Data Science: Basics

It’s common when first learning Python for Data Science to have trouble remembering all the syntax that you need. While at Dataquest we advocate getting used to consulting the Python documentation, sometimes it’s nice to have a handy reference, so we’ve put together this cheat sheet to help you out! This cheat sheet is the […]

Should I Learn Python 2 or 3?

One of the biggest sources of confusion and misinformation for people wanting to learn Python is which version they should learn. Should I learn Python 2.x or Python 3.x? Indeed, this is one of the questions we are asked most often at Dataquest, where we teach Python as part of our Data Science curriculum. This […]

Understanding SettingwithCopyWarning in pandas

SettingWithCopyWarning is one of the most common hurdles people run into when learning pandas. A quick web search will reveal scores of Stack Overflow questions, GitHub issues and forum posts from programmers trying to wrap their heads around what this warning means in their particular situation. It’s no surprise that many struggle with this; there […]

Web Scraping with Python and BeautifulSoup

To source data for data science projects, you’ll often rely on SQL and NoSQL databases, APIs, or ready-made CSV data sets. The problem is that you can’t always find a data set on your topic, databases are not kept current and APIs are either expensive or have usage limits. If the data you’re looking for […]

How to become a data scientist

Data science is one of the most buzzed about fields right now, and data scientists are in extreme demand. And with good reason — data scientists are doing everything from creating self-driving cars to automatically captioning images. Given all the interesting applications, it makes sense that data science is a very sought-after career. Data science […]

Show Buttons
Share On Facebook
Share On Twitter
Share On Linkedin
Share On Reddit
Hide Buttons